Discrete maximal parabolic regularity for Galerkin finite element methods

نویسندگان

  • Dmitriy Leykekhman
  • Boris Vexler
چکیده

The main goal of the paper is to establish time semidiscrete and space-time fully discrete maximal parabolic regularity for the time discontinuous Galerkin solution of linear parabolic equations. Such estimates have many applications. They are essential, for example, in establishing optimal a priori error estimates in nonHilbertian norms without unnatural coupling of spatial mesh sizes with time steps.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum-norm stability and maximal Lp regularity of FEMs for parabolic equations with Lipschitz continuous coefficients

In this paper, we study the semi-discrete Galerkin finite element method for parabolic equations with Lipschitz continuous coefficients. We prove the maximumnorm stability of the semigroup generated by the corresponding elliptic finite element operator, and prove the space-time stability of the parabolic projection onto the finite element space in L∞(QT ) and L p((0, T ); Lq ( )), 1 < p, q < ∞....

متن کامل

Maximal L Error Analysis of Fems for Nonlinear Parabolic Equations with Nonsmooth Coefficients

The paper is concerned with Lp error analysis of semi-discrete Galerkin FEMs for nonlinear parabolic equations. The classical energy approach relies heavily on the strong regularity assumption of the diffusion coefficient, which may not be satisfied in many physical applications. Here we focus our attention on a general nonlinear parabolic equation (or system) in a convex polygon or polyhedron ...

متن کامل

Pointwise Best Approximation Results for Galerkin Finite Element Solutions of Parabolic Problems

In this paper we establish a best approximation property of fully discrete Galerkin finite element solutions of second order parabolic problems on convex polygonal and polyhedral domains in the L∞ norm. The discretization method uses of continuous Lagrange finite elements in space and discontinuous Galerkin methods in time of an arbitrary order. The method of proof differs from the established ...

متن کامل

Weak Galerkin Finite Element Method for Second Order Parabolic Equations

We apply in this paper the weak Galerkin method to the second order parabolic differential equations based on a discrete weak gradient operator. We establish both the continuous time and the discrete time weak Galerkin finite element schemes, which allow using the totally discrete functions in approximation space and the finite element partitions of arbitrary polygons with certain shape regular...

متن کامل

Error Estimates for Discontinuous Galerkin Time-Stepping Schemes for Robin Boundary Control Problems Constrained to Parabolic PDEs

We consider fully discrete finite element approximations of a Robin optimal boundary control problem, constrained by linear parabolic PDEs with rough initial data. Conforming finite element methods for spatial discretization combined with discontinuous time-stepping Galerkin schemes are being used for the space-time discretization. Error estimates are proved under weak regularity hypotheses for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017